Nanoscale tribology of graphene grown by chemical vapor deposition and transferred onto silicon oxide substrates

نویسندگان

  • Tuna Demirbaş
  • Mehmet Z. Baykara
چکیده

We present a comprehensive nanoscale tribological characterization of single-layer graphene grown by chemical vapor deposition (CVD) and transferred onto silicon oxide (SiO2) substrates. Specifically, the nanotribological properties of graphene samples are studied via atomic force microscopy (AFM) under ambient conditions using calibrated probes, by measuring the evolution of friction force with increasing normal load. The effect of using different probes and post-transfer cleaning procedures on frictional behavior is evaluated. A new method of quantifying lubrication performance based on measured friction coefficient ratios of graphene and SiO2 is introduced. A comparison of lubrication properties with mechanically-exfoliated graphene is performed. Results indicate that CVD-grown graphene constitutes a very good solid lubricant on SiO2, reducing friction coefficients by ;90% for all investigated samples. Finally, the effect of wrinkles associated with CVD-grown graphene on measured friction values is quantitatively analyzed, with results revealing a substantial increase in friction on these structural defects.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

High-quality AlN films grown on chemical vapor-deposited graphene films

We report the growth of high-quality AlN films on graphene. The graphene films were synthesized by CVD and then transferred onto silicon substrates. Epitaxial aluminum nitride films were deposited by DC magnetron sputtering on both graphene as an intermediate layer and silicon as a substrate. The structural characteristics of the AlN films and graphene were investigated. Highly c-axis-oriented ...

متن کامل

Graphene as a transparent conducting and surface field layer in planar Si solar cells

This work presents an experimental and finite difference time domain (FDTD) simulation-based study on the application of graphene as a transparent conducting layer on a planar and untextured crystalline p-n silicon solar cell. A high-quality monolayer graphene with 97% transparency and 350 Ω/□ sheet resistance grown by atmospheric pressure chemical vapor deposition method was transferred onto p...

متن کامل

Ultra long-range interactions between large area graphene and silicon.

The wet-transfer of graphene grown by chemical vapor deposition (CVD) has been the standard procedure for transferring graphene to any substrate. However, the nature of the interactions between large area graphene and target substrates is unknown. Here, we report on measurements of the traction-separation relations, which represent the strength and range of adhesive interactions, and the adhesi...

متن کامل

Comparison of Properties of Ti/TiN/TiCN/TiAlN Film Deposited by Cathodic Arc Physical Vapor and Plasma-assisted Chemical Vapor Deposition on Custom 450 Steel Substrates

This study investigated the effects of deposition techniques on the microstructural and tribological properties of Ti/TiN/TiCN/TiAlN multilayer coatings onto a Custom 450 steel substrate. The coatings were produced using cathodic arc physical vapor deposition (CAPVD) and plasma-assisted chemical vapor deposition (PACVD). The microstructural of the coatings was evaluated using (SEM), and phase f...

متن کامل

A Rational Strategy for Graphene Transfer on Substrates with Rough Features.

Graphene grown by chemical vapor deposition is transferred by a very simple, yet effective approach from the growth substrate onto substrates with rough features. This novel and facile method not only results in satisfactory transfer on substrates with terraces or grooves, but also gives rise to a successful result for uneven growth substrates.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016